Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 408
Filtrar
1.
J Phys Chem Lett ; 15(15): 4015-4023, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38577843

RESUMO

Wide-bandgap (WBG) perovskites play a crucial role in perovskite-based tandem cells. Despite recent advances using self-assembled monolayers (SAMs) to facilitate efficiency breakthroughs, achieving precise control over the deposition of such ultrathin layers remains a significant challenge for large-scale fabrication of WBG perovskite and, consequently, for the tandem modules. To address these challenges, we propose a facile method that integrates MeO-2PACz and Me-4PACz in optimal proportions (Mixed SAMs) into the perovskite precursor solution, enabling the simultaneous codeposition of WBG perovskite and SAMs. This technique promotes the spontaneous formation of charge-selective contacts while reducing defect densities by coordinating phosphonic acid groups with the unbonded Pb2+ ions at the bottom interface. The resulting WBG perovskite solar cells (PSCs) demonstrated a power conversion efficiency of 19.31% for small-area devices (0.0585 cm2) and 17.63% for large-area modules (19.34 cm2), highlighting the potential of this codeposition strategy for fabricating high-performance, large-area WBG PSCs with enhanced reproducibility. These findings offer valuable insights for advancing WBG PSCs and the scalable fabrication of modules.

2.
Arch Toxicol ; 98(5): 1399-1413, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460002

RESUMO

Pulmonary fibrosis involves destruction of the lung parenchyma and extracellular matrix deposition. Effective treatments for pulmonary fibrosis are lacking and its pathogenesis is still unclear. Studies have found that epithelial-mesenchymal transition (EMT) of alveolar epithelial cells (AECs) plays an important role in progression of pulmonary fibrosis. Thus, an in-depth exploration of its mechanism might identify new therapeutic targets. In this study, we revealed that a novel circular RNA, MKLN1 (circMKLN1), was significantly elevated in two pulmonary fibrosis models (intraperitoneally with PQ, 50 mg/kg for 7 days, and intratracheally with BLM, 5 mg/kg for 28 days). Additionally, circMKLN1 was positively correlated with the severity of pulmonary fibrosis. Inhibition of circMKLN1 expression significantly reduced collagen deposition and inhibited EMT in AECs. EMT was aggravated after circMKLN1 overexpression in AECs. MiR-26a-5p/miR-26b-5p (miR-26a/b), the targets of circMKLN1, were confirmed by luciferase reporter assays. CircMKLN1 inhibition elevated miR-26a/b expression. Significantly decreased expression of CDK8 (one of the miR-26a/b targets) was observed after inhibition of circMKLN1. EMT was exacerbated again, and CDK8 expression was significantly increased after circMKLN1 inhibition and cotransfection of miR-26a/b inhibitors in AECs. Our research indicated that circMKLN1 promoted CDK8 expression through sponge adsorption of miR-26a/b, which regulates EMT and pulmonary fibrosis. This study provides a theoretical basis for finding new targets or biomarkers in pulmonary fibrosis.


Assuntos
MicroRNAs , Fibrose Pulmonar , Humanos , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , Células Epiteliais Alveolares , Transição Epitelial-Mesenquimal/genética , Quinase 8 Dependente de Ciclina/metabolismo , Moléculas de Adesão Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
3.
Langmuir ; 40(13): 6786-6805, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38503426

RESUMO

Traditional heterogeneous catalysts are affected in the catalytic hydrogenation of PS by the scale effect, viscosity effect, adhesion effect, and conformational effect, resulting in poor activity and stability. Monolithic Pd-CNTs@FN catalysts could eliminate or weaken the impact of these negative effects. We grew nitrogen-doped carbon nanotubes (NCNTs) on monolithic-foamed nickel (FN) and investigate their growth mechanism. Meanwhile, the feasibility of using the NCNTs@FN carrier for PS hydrogenation reaction was also verified. The growth of NCNTs on FN can be divided into 3 stages: initial growth stage, stable growth stage, and supersaturation stage. Finally, a three-layer structure of NCNT layer, dense carbon layer, and FN skeleton is formed. Two types of structures, nickel-doped carbon nanotubes (NiCNTs) and C-Ni alloy, are formed by combining C and Ni, while four nitrogen-doped structures, NPD, NPR, NG, and NO, are formed by C and N. The prepared carrier exhibited an extremely outstanding specific surface area (2.829 × 106 cm2/g) and strength (no NCNTs falling off after 24 h 500 rpm agitation), as well as high catalytic activity for PS hydrogenation after loaded with Pd (2.13 ± 0.95 nm), with a TOF of up to 27.6 gPS/(gPd•h). After 8 repetitions of the catalyst, there was no significant decrease in activity. This proves the excellent performance of Pd-NCNTs@FN in polymer hydrogenation reactions, laying a solid foundation for further research on the mechanism of NCNTs promoting PS hydrogenation and regulating the growth of NCNTs.

4.
Proc Natl Acad Sci U S A ; 121(11): e2312596121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437555

RESUMO

Self-assembled DNA crystals offer a precise chemical platform at the ångström-scale for DNA nanotechnology, holding enormous potential in material separation, catalysis, and DNA data storage. However, accurately controlling the crystallization kinetics of such DNA crystals remains challenging. Herein, we found that atomic-level 5-methylcytosine (5mC) modification can regulate the crystallization kinetics of DNA crystal by tuning the hybridization rates of DNA motifs. We discovered that by manipulating the axial and combination of 5mC modification on the sticky ends of DNA tensegrity triangle motifs, we can obtain a series of DNA crystals with controllable morphological features. Through DNA-PAINT and FRET-labeled DNA strand displacement experiments, we elucidate that atomic-level 5mC modification enhances the affinity constant of DNA hybridization at both the single-molecule and macroscopic scales. This enhancement can be harnessed for kinetic-driven control of the preferential growth direction of DNA crystals. The 5mC modification strategy can overcome the limitations of DNA sequence design imposed by limited nucleobase numbers in various DNA hybridization reactions. This strategy provides a new avenue for the manipulation of DNA crystal structure, valuable for the advancement of DNA and biomacromolecular crystallography.


Assuntos
5-Metilcitosina , DNA , Cristalização , Catálise , Cristalografia
5.
Science ; 383(6690): 1492-1498, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38547269

RESUMO

Transient implantable piezoelectric materials are desirable for biosensing, drug delivery, tissue regeneration, and antimicrobial and tumor therapy. For use in the human body, they must show flexibility, biocompatibility, and biodegradability. These requirements are challenging for conventional inorganic piezoelectric oxides and piezoelectric polymers. We discovered high piezoelectricity in a molecular crystal HOCH2(CF2)3CH2OH [2,2,3,3,4,4-hexafluoropentane-1,5-diol (HFPD)] with a large piezoelectric coefficient d33 of ~138 picocoulombs per newton and piezoelectric voltage constant g33 of ~2450 × 10-3 volt-meters per newton under no poling conditions, which also exhibits good biocompatibility toward biological cells and desirable biodegradation and biosafety in physiological environments. HFPD can be composite with polyvinyl alcohol to form flexible piezoelectric films with a d33 of 34.3 picocoulombs per newton. Our material demonstrates the ability for molecular crystals to have attractive piezoelectric properties and should be of interest for applications in transient implantable electromechanical devices.


Assuntos
Materiais Biocompatíveis , Compostos Férricos , Polímeros , Biodegradação Ambiental , Polímeros/química , Polímeros/metabolismo , Álcool de Polivinil/química , Álcool de Polivinil/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Eletricidade , Animais , Ratos , Ratos Sprague-Dawley , Compostos Férricos/química , Compostos Férricos/metabolismo
6.
Mol Cell Biochem ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485805

RESUMO

Indole-3-propionic acid (IPA), a gut microbiota-derived metabolite of tryptophan, has been proven to fulfill an essential function in cardiovascular disease (CVD) and nerve regeneration disease. However, the role of IPA in aortic dissection (AD) has not been revealed. We aimed to investigate the role of IPA in the pathogenesis of AD and the underlying mechanisms of IPA in endothelial dysfunction. Untargeted metabolomics has been employed to screen the plasma metabolic profile of AD patients in comparison with healthy individuals. Network pharmacology provides insights into the potential molecular mechanisms underlying IPA. 3-aminopropionitrile fumarate (BAPN) and angiotensin II (Ang II) were administered to induce AD in mice, while human umbilical vein endothelial cells (HUVECs) were employed for in vitro validation of the signaling pathways predicted by network pharmacology. A total of 224 potentially differential plasma metabolites were identified in the AD patients, with 110 up-regulated metabolites and 114 down-regulated metabolites. IPA was the most significantly decreased metabolite involved in tryptophan metabolism. Bcl2, caspase3, and AKT1 were predicted as the target genes of IPA by network pharmacology and molecular docking. IPA suppressed Ang II-induced apoptosis, intracellular ROS generation, inflammation, and endothelial tight junction (TJ) loss. Animal experiments demonstrated that administration of IPA alleviated the occurrence and severity of AD in mice. Taken together, we identified a previously unexplored association between tryptophan metabolite IPA and AD, providing a novel perspective on the underlying mechanism through which IPA mitigates endothelial dysfunction to protect against AD.

7.
Animals (Basel) ; 14(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38473150

RESUMO

Four trials were conducted to establish a protein and amino acid requirement model for layer chicks over 0-6 weeks by using the analytical factorization method. In trial 1, a total of 90 one-day-old Jing Tint 6 chicks with similar body weight were selected to determine the growth curve, carcass and feather protein deposition, and amino acid patterns of carcass and feather proteins. In trials 2 and 3, 24 seven-day-old and 24 thirty-five-day-old Jing Tint 6 chicks were selected to determine the protein maintenance requirements, amino acid pattern, and net protein utilization rate. In trial 4, 24 ten-day-old and 24 thirty-eight-day-old Jing Tint 6 chicks were selected to determine the standard terminal ileal digestibility of amino acids. The chicks were fed either a corn-soybean basal diet, a low nitrogen diet, or a nitrogen-free diet throughout the different trials. The Gompertz equation showed that there is a functional relationship between body weight and age, described as BWt(g) = 2669.317 × exp(-4.337 × exp(-0.019t)). Integration of the test results gave a comprehensive dynamic model equation that could accurately calculate the weekly protein and amino acid requirements of the layer chicks. By applying the model, it was found that the protein requirements for Jing Tint 6 chicks during the 6-week period were 21.15, 20.54, 18.26, 18.77, 17.79, and 16.51, respectively. The model-predicted amino acid requirements for Jing Tint 6 chicks during the 6-week period were as follows: Aspartic acid (0.992-1.284), Threonine (0.601-0.750), Serine (0.984-1.542), Glutamic acid (1.661-1.925), Glycine (0.992-1.227), Alanine (0.909-0.961), Valine (0.773-1.121), Cystine (0.843-1.347), Methionine (0.210-0.267), Isoleucine (0.590-0.715), Leucine (0.977-1.208), Tyrosine (0.362-0.504), Phenylalanine (0.584-0.786), Histidine (0.169-0.250), Lysine (0.3999-0.500), Arginine (0.824-1.147), Proline (1.114-1.684), and Tryptophan (0.063-0.098). In conclusion, this study constructed a dynamic model for the protein and amino acid requirements of Jing Tint 6 chicks during the brooding period, providing an important insight to improve precise feeding for layer chicks through this dynamic model calculation.

8.
Front Pharmacol ; 15: 1274209, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410129

RESUMO

Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that exhibits high expression in various tumors and is associated with a poor prognosis. FAK activation promotes tumor growth, invasion, metastasis, and angiogenesis via both kinase-dependent and kinase-independent pathways. Moreover, FAK is crucial for sustaining the tumor microenvironment. The inhibition of FAK impedes tumorigenesis, metastasis, and drug resistance in cancer. Therefore, developing targeted inhibitors against FAK presents a promising therapeutic strategy. To date, numerous FAK inhibitors, including IN10018, defactinib, GSK2256098, conteltinib, and APG-2449, have been developed, which have demonstrated positive anti-tumor effects in preclinical studies and are undergoing clinical trials for several types of tumors. Moreover, many novel FAK inhibitors are currently in preclinical studies to advance targeted therapy for tumors with aberrantly activated FAK. The benefits of FAK degraders, especially in terms of their scaffold function, are increasingly evident, holding promising potential for future clinical exploration and breakthroughs. This review aims to clarify FAK's role in cancer, offering a comprehensive overview of the current status and future prospects of FAK-targeted therapy and combination approaches. The goal is to provide valuable insights for advancing anti-cancer treatment strategies.

9.
Am J Transl Res ; 16(1): 200-207, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322574

RESUMO

OBJECTIVES: To investigate the effect of Rain Classroom and Presentation-Assimilation-Discussion (PAD) class blended learning mode on a surgical nursing course. METHODS: In this retrospective study, a total of 212 nursing undergraduates of Youjiang Medical University for Nationalities were selected as the research objects. There were 102 participants taking the traditional teaching model, assigned into the control group. The remaining 110 participants taking Rain Classroom and PAD class blended learning mode were assigned into the observation group. A questionnaire survey was conducted after the intervention. RESULTS: After the intervention, the comprehensive assessment score of the observation group was higher than the control group ((83.8 ± 2.64) vs. (81.71 ± 3.74), P = 0.01). The independent learning ability ((81.61 ± 12.04) vs. (77.46 ± 4.23), P = 0.001), and self-efficacy ((27.78 ± 4.18) vs. (26.39 ± 4.67), P = 0.023) were higher in the observation group than those in the control group. The course satisfaction of the observation group was higher than that in the control group (79.09% and 65.69%, P = 0.029). CONCLUSIONS: The blended mode of Rain Classroom with PAD class effectively improves teaching quality, academic performance, self-learning ability, self-efficacy of students, and increased students' satisfaction with teaching methods.

10.
Anim Nutr ; 16: 251-266, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38362519

RESUMO

T-2 toxin is one of the most widespread and toxic fungal toxins in food and feed. It can cause gastrointestinal toxicity, hepatotoxicity, immunotoxicity, reproductive toxicity, neurotoxicity, and nephrotoxicity in humans and animals. T-2 toxin is physicochemically stable and does not readily degrade during food and feed processing. Therefore, suppressing T-2 toxin-induced organ toxicity through antidotes is an urgent issue. Protective agents against the organ toxicity of T-2 toxin have been recorded widely in the literature, but these protective agents and their molecular mechanisms of detoxification have not been comprehensively summarized. In this review, we provide an overview of the various protective agents to T-2 toxin and the molecular mechanisms underlying the detoxification effects. Targeting appropriate targets to antagonize T-2 toxin toxicity is also an important option. This review will provide essential guidance and strategies for the better application and development of T-2 toxin antidotes specific for organ toxicity in the future.

11.
Comput Biol Med ; 171: 108213, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422962

RESUMO

The nonlinearity and non-separability of the antithetic PID (aPID) controller have provided greater flexibility in the design of biochemical reaction networks (BCRNs), resulting in significant impacts on biocontrol-systems. Nevertheless, the dilution of control species is disregarded in designs of aPID controllers, which would lead to the failure of inhibition mechanism in the controller and loss of robust perfect adaptation (RPA)-the biological counterpart of robust steady-state tracking. Here, the impact of dilution processes on the structure of aPID is investigated in this study. It is discovered that the proportional and low-pass filters are altered when the dilution processes is present in control species, which increases the coupling between the controller parameters. Moreover, additional integrations for the reference signal and control output generated by control species dilution further leads to the loss of RPA. Subsequently, a novel aPID controller represented by BCRNs, termed quasi-aPID, has been designed to eliminate the detrimental effects of the dilution processes. In an effort to ameliorate the interdependencies among controller parameters, a degradation inhibition mechanism is employed within this controller. Furthermore, this work establishes the limiting relationship between the controller's reaction rates in order to guarantee RPA, while abstaining from the introduction of supplementary species and biochemical reactions. By using the quasi-aPID controller in both the Escherichia coli gene expression model and the whole-body cholesterol metabolism model, its effectiveness is confirmed. Simulation results demonstrate that, the quasi-aPID exhibits a smaller absolute steady-state error in both models and guarantees the RPA property.


Assuntos
Simulação por Computador
12.
BMC Med Educ ; 24(1): 86, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267919

RESUMO

BACKGROUND: Rain Classroom was one of the most popular online learning platforms in Chinese higher education during the pandemic. However, there is little research on user intention under the guidance of technology acceptance and unified theory (UTAUT). OBJECTIVE: This research aims to determine factors influencing students' behavioural intention to use Rain Classroom. METHODS: In this cross-sectional and correlational investigation, 1138 medical students from five medical universities in Guangxi Province, China, made up the sample. This study added self-efficacy (SE), motivation (MO), stress (ST), and anxiety (AN) to the UTAUT framework. This study modified the framework by excluding actual usage variables and focusing only on intention determinants. SPSS-26 and AMOS-26 were used to analyze the data. The structural equation modelling technique was chosen to confirm the hypotheses. RESULTS: Except for facilitating conditions (FC), all proposed factors, including performance expectancy (PE), effort expectancy (EE), social influence (SI), self-efficacy (SE), motivation (MO), anxiety (AN), and stress (ST), had a significant effect on students' behavioural intentions to use Rain Classroom. CONCLUSIONS: The research revealed that the proposed model, which was based on the UTAUT, is excellent at identifying the variables that influence students' behavioural intentions in the Rain Classroom. Higher education institutions can plan and implement productive classrooms.


Assuntos
Intenção , Estudantes de Medicina , Humanos , China , Estudos Transversais
13.
Anal Methods ; 16(3): 420-426, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38165136

RESUMO

The efficient extraction of phthalic acid esters (PAEs) is challenging due to their extremely low concentration, complicated matrices and hydrophilicity. Herein, hollow microspheres, as an ideal coating, possess significant potential for solid-phase microextraction (SPME) due to their fascinating properties. In this study, multiwalled carbon nanotube hollow microspheres (MWCNT-HMs) were utilized as a fiber coating for the SPME of PAEs from tea beverages. MWCNT-HMs were obtained by dissolving the polystyrene (PS) cores with organic solvents. Interestingly, MWCNT-HMs well maintain the morphology of the MWCNTs@PS precursors. The layer-by-layer (LBL) assembly of MWCNTs on PS microsphere templates was achieved through electrostatic interactions. Six PAEs, di-ethyl phthalate (DEP), di-iso-butyl phthalate (DIBP), di-n-butyl phthalate (DBP), benzyl butyl phthalate (BBP), di-2-ethylhexyl phthalate (DEHP) and di-n-octyl phthalate (DOP), were selected as target analytes for assessing the efficiency of the coating for SPME. The stirring rate, sample solution pH and extraction time were optimized by using the Box-Behnken design. Under optimal working conditions, the proposed MWCNT-HMs/SPME was coupled with gas chromatography-tandem mass spectrometry (GC-MS/MS) to achieve high enrichment factors (118-2137), wide linearity (0.0004-10 µg L-1), low limits of detection (0.00011-0.0026 µg L-1) and acceptable recovery (80.2-108.5%) for the detection of PAEs. Therefore, the MWCNT-HM coated fibers are promising alternatives in the SPME method for the sensitive detection of PAEs at trace levels in tea beverages.


Assuntos
Nanotubos de Carbono , Ácidos Ftálicos , Microextração em Fase Sólida/métodos , Microesferas , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas em Tandem , Ácidos Ftálicos/análise , Ácidos Ftálicos/química , Bebidas/análise , Chá
14.
Adv Mater ; 36(8): e2307936, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37907064

RESUMO

Ferroelectric lithography, which can purposefully control and pattern ferroelectric domains in the micro-/nanometer scale, has extensive applications in data memories, field-effect transistors, race-track memory, tunneling barriers, and integrated biochemical sensors. In pursuit of mechanical flexibility and light weight, organic ferroelectric polymers such as poly(vinylidene fluoride) are developed; however, they still suffer from complicated stretching processes of film fabrication and poor degradability. These poor features severely hinder their applications. Here, the ferroelectric lithography on the biocompatible and biodegradable poly(lactic acid) (PLA) thin films at room temperature is demonstrated. The semicrystalline PLA thin film can be easily fabricated through the melt-casting method, and the desired domain structures can be precisely written according to the predefined patterns. Most importantly, the coercive voltage (Vc ) of PLA thin film is relatively low (lower than 30 V) and can be further reduced with the decrease of the film thickness. These intriguing behaviors combined with satisfying biodegradability make PLA thin film a desirable candidate for ferroelectric lithography and enable its future application in the field of bioelectronics and biomedicine. This work sheds light on further exploration of ferroelectric lithography on other polymer ferroelectrics as well as their application as nanostructured devices.

15.
Sci China Life Sci ; 67(3): 504-517, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37930473

RESUMO

During the pathogenesis of type 1 diabetes (T1D) and type 2 diabetes (T2D), pancreatic islets, especially the ß cells, face significant challenges. These insulin-producing cells adopt a regeneration strategy to compensate for the shortage of insulin, but the exact mechanism needs to be defined. High-fat diet (HFD) and streptozotocin (STZ) treatment are well-established models to study islet damage in T2D and T1D respectively. Therefore, we applied these two diabetic mouse models, triggered at different ages, to pursue the cell fate transition of islet ß cells. Cre-LoxP systems were used to generate islet cell type-specific (α, ß, or δ) green fluorescent protein (GFP)-labeled mice for genetic lineage tracing, thereinto ß-cell GFP-labeled mice were tamoxifen induced. Single-cell RNA sequencing (scRNA-seq) was used to investigate the evolutionary trajectories and molecular mechanisms of the GFP-labeled ß cells in STZ-treated mice. STZ-induced diabetes caused extensive dedifferentiation of ß cells and some of which transdifferentiated into a or δ cells in both youth- and adulthood-initiated mice while this phenomenon was barely observed in HFD models. ß cells in HFD mice were expanded via self-replication rather than via transdifferentiation from α or δ cells, in contrast, α or δ cells were induced to transdifferentiate into ß cells in STZ-treated mice (both youth- and adulthood-initiated). In addition to the re-dedifferentiation of ß cells, it is also highly likely that these "α or δ" cells transdifferentiated from pre-existing ß cells could also re-trans-differentiate into insulin-producing ß cells and be beneficial to islet recovery. The analysis of ScRNA-seq revealed that several pathways including mitochondrial function, chromatin modification, and remodeling are crucial in the dynamic transition of ß cells. Our findings shed light on how islet ß cells overcome the deficit of insulin and the molecular mechanism of islet recovery in T1D and T2D pathogenesis.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Camundongos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 1/genética , Ilhotas Pancreáticas/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/genética , Modelos Animais de Doenças , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia
16.
Plant Physiol Biochem ; 206: 108288, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38160533

RESUMO

Apple epidermal wax protects plants from environmental stresses, determines fruit gloss and improves postharvest storage quality. However, the molecular mechanisms underlying the biosynthesis and regulation of apple epidermal waxes are not fully understood. In this study, we isolated a MdDEWAX gene from apple, which localized in the nucleus, expressed mainly in apple fruit, and induced by drought. We transformed the MdDEWAX gene into Arabidopsis, and found that heterologous expression of MdDEWAX reduced the accumulation of cuticular waxes in leaves and stems, increased epidermal permeability, the rate of water loss, and the rate of chlorophyll extraction of leaves and stems, altered the sensitivity to ABA, and reduced drought tolerance. Meanwhile, overexpression or silencing of the gene in the epidermis of apple fruits decreased or increased wax content, respectively. This study provides candidate genes for breeding apple cultivars and rootstocks with better drought tolerance.


Assuntos
Arabidopsis , Malus , Resistência à Seca , Fatores de Transcrição/genética , Melhoramento Vegetal , Arabidopsis/genética , Secas , Malus/genética , Malus/metabolismo , Ceras/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
J Nutr ; 154(2): 369-380, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38122845

RESUMO

BACKGROUND: There is a U-shaped relationship between dietary selenium (Se) ingestion and optimal sperm quality. OBJECTIVES: This study aimed to investigate the optimal dietary dose and forms of Se for sperm quality of breeder roosters and the relevant mechanisms. METHODS: In experiment 1, 18-wk-old Jingbai laying breeder roosters were fed a Se-deficient base diet (BD, 0.06 mg Se/kg), or the BD + 0.1, 0.2, 0.3, 0.4, 0.5, or 1.0 mg Se/kg for 9 wk. In experiment 2, the roosters were fed the BD or the BD + sodium selenite (SeNa), seleno-yeast (SeY), or Se-nanoparticles (SeNPs) at 0.2 mg Se/kg for 9 wk. RESULTS: In experiment 1, added dietary 0.2 and 0.3 mg Se/kg led to higher sperm motility and lower sperm mortality than the other groups at weeks 5, 7, and/or 9. Furthermore, added dietary 0.2-0.4 mg Se/kg produced better testicular histology and/or lower testicular 8-hydroxy-deoxyguanosine than the other groups. Moreover, integrated testicular transcriptomic and cecal microbiomic analysis revealed that inflammation, cell proliferation, and apoptosis-related genes and bacteria were dysregulated by Se deficiency or excess. In experiment 2, compared with SeNa, SeNPs slightly increased sperm motility throughout the experiment, whereas SeNPs slightly reduced sperm mortality compared with SeY at week 9. Both SeY and SeNPs decreased malondialdehyde in the serum than those of SeNa, and SeNPs led to higher glutathione peroxidase (GPX) and thioredoxin reductase activities and GPX1 and B-cell lymphoma 2 protein concentrations in the testis compared with SeY and SeNa. CONCLUSIONS: The optimal dietary Se dose for reproductive health of breeder roosters is 0.25-0.35 mg Se/kg, and SeNPs displayed better effects on reproductive health than SeNa and SeY in laying breeder roosters. The optimal doses and forms of Se maintain reproductive health of roosters associated with regulation intestinal microbiota homeostasis and/or testicular redox balance, inflammation, cell proliferation, and apoptosis.


Assuntos
Microbioma Gastrointestinal , Selênio , Masculino , Animais , Testículo/metabolismo , Selênio/metabolismo , Galinhas/metabolismo , Saúde Reprodutiva , Motilidade dos Espermatozoides , Sementes , Oxirredução , Dieta , Inflamação/metabolismo , Apoptose , Proliferação de Células , Suplementos Nutricionais
18.
Artigo em Inglês | MEDLINE | ID: mdl-38062270

RESUMO

OBJECTIVES: To analyze the hemostatic effect of different application methods and time of tranexamic acid (TXA) on primary unilateral total hip arthroplasty. METHODS: A total of 126 patients with primary unilateral total hip replacement admitted between January 2019 and January 2021 were recruited. The patients were divided into three groups (42 people in each group) by random number table method. In group I, 2.0 g TXA was perfused locally into the hip joint cavity through the drainage tube for 2 h. Group II was perfused locally with the same method for 4 h. Group III was given TXA 15 mg/kg intravenously 5-10 min before surgical incision. The hemoglobin concentration, red blood cell (RBC) count, international normalized ratio (INR), activated partial thromboplastin time (APTT), fibrinogen (FIB), D-Dimer (D-D), intraoperative blood loss, postoperative blood loss, implicit blood loss, total blood loss, postoperative blood transfusion and complications were compared. RESULTS: The postoperative drainage volume of group I (195.07 ± 34.65) mL and group II (199.62 ± 38.07) mL was significantly lower than that of group III (213.12 ± 25.05) mL (P = 0.037). There was no significant difference in postoperative drainage between group I and group II (P > 0.05). There was no significant difference in intraoperative blood loss, hidden blood loss and total blood loss between the three groups (P > 0.05). There was no difference in the incidence of deep vein thrombosis among the three groups (P > 0.05). CONCLUSIONS: TXA is a safe and effective way of hemostasis in total hip arthroplasty. Local intraarticular application of TXA can reduce the postoperative drainage, but the difference is not clinically significant, probably due to the number of samples. There is no difference in the postoperative drainage after local application of 2 or 4 h, and there is no difference in the overall hemostasis effect between intravenous or local application of TXA.

19.
J Med Virol ; 95(12): e29339, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38130177

RESUMO

Norovirus (NoV) infection is a leading cause of acute gastroenteritis (AGE) for people of all ages. Here, we reported the molecular epidemiology and genetic diversity of NoVs among hospitalized patients with AGE between 2016 and 2018 in Shandong Province, China. Two thousand sixty-nine AGE patients from sentinel hospitals were enrolled. The stool samples were collected and tested for NoVs by real-time RT-PCR. The RNA-dependent RNA polymerase (RdRp) and capsid gene of 163 strains were amplified and sequenced for genotyping. Phylogenetic analyses and genomic characterization were conducted with the VP1 and RdRp region of the full genome sequences. Four hundred seventy two (21.76%) samples were NoV-positive. The positive rate in 2016 was higher than those of 2017 and 2018. We observed diverse NoV genotypes. GII.2[P16] emerged in January 2017 and became the dominant genotype between May and June 2017. Phylogenetic analyses showed that our GII.2[P16] genomes clustered in the SC1 in VP1 region, while they belonged to the Emerging GⅡ.P16 (2015-2017) clade in RdRp region. Our GⅡ.4 strains displayed two amino acid mutations, positions R297H and D372N, in epitope A of the VP1 region. Our study highlighted that NoV is an important pathogen of viral AGE in Shandong and, therefore, it is necessary to strengthen its surveillance.


Assuntos
Infecções por Caliciviridae , Gastroenterite , Norovirus , Humanos , Norovirus/genética , Epidemiologia Molecular , Filogenia , Prevalência , Gastroenterite/epidemiologia , Genótipo , Mutação , China/epidemiologia , Infecções por Caliciviridae/epidemiologia , RNA Polimerase Dependente de RNA/genética , Fezes , Variação Genética
20.
Food Chem Toxicol ; 182: 114159, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37913901

RESUMO

This study was to evaluate the efficacy of an integrated mycotoxin-mitigating agent in reducing the adverse effects of co-occurring dietary aflatoxin B1 deoxynivalenol and ochratoxin A on broiler breeder hens. 360 30-week-old Hubbard Efficiency Plus broiler breeder hens were allocated into four groups and received a basal diet (BD; Control), BD added 0.15 mg/kg aflatoxin B1+1.5 mg/kg deoxynivalenol+0.12 mg/kg ochratoxin A (Toxins), BD plus Toxins with 0.1% TOXO-XL (Toxins + XL1), and BD plus Toxins with 0.2% TOXO-XL (Toxins + XL2), respectively, for 8 weeks, and then received the same BD for another 4 weeks. Compared with control, mycotoxins decreased total egg weigh, egg laying rate, settable eggs rate, hatch of total eggs rate, egg quality, but increased feed/egg ratio and mortality rate, and impaired the liver and oviduct health during weeks 1-8 and(or) 9-12. It also increased PC and MDA concentrations, TUNEL-positive cells and IL-1ß and IL-6 expression, and decreased T-AOC, GPX and CAT activities in liver and/or oviduct. Notably, most of these negative changes were mitigated by both dosages of TOXO-XL. Generally, 0.2% TOXO-XL displayed better mitigation effects than 0.1% TOXO-XL. Conclusively, these findings revealed that TOXO-XL could mitigate the combined mycotoxins-induced toxicity on the performance, liver and oviduct health, through the regulation of redox, immunity, and apoptosis in broiler breeder hens.


Assuntos
Micotoxinas , Humanos , Animais , Feminino , Micotoxinas/toxicidade , Micotoxinas/metabolismo , Galinhas/metabolismo , Aflatoxina B1/toxicidade , Aflatoxina B1/metabolismo , Dieta , Fígado/metabolismo , Oviductos/metabolismo , Ração Animal/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...